Magnetic Strength Activity

What are some ways magnets are commonly used?			
In museums, we often use magnets to display artwork To the right is a diagram of our system with the magnethe surface, and the object which creates a gap betwe the two.	c. et,	agnetic face	
How would you expect the size of the magnet affect the amount of weight it can hold?	he Diagram of our system.	our system.	
How might you test this hypothesis?			
How would the thickness of the object affect the amount	unt of weight the magnet can		
hold? Measure the thickness and weight of each paper packet.	et and record it below		
	# of sheets mm g	grams	
# of sheets mm grams	# of sheets mm g	grams	

© 2020 Developed by the Parsons Conservation Laboratory of the Carlos Museum at Emory University in partnership with Briarlake Elementary School, Dekalb County School District, Georgia. Activity developed by B. Kasavan; resources by E. Bowen.

In order to test your thickness hypothesis, we will use the magnet to hold paper packets of different thicknesses against the ferromagnetic surface and add weight until it falls. Find the largest amount of weight it can hold before falling. Write this weight below

Ferromagnetic su	ırface:				
# of sheets	grams	# of sheets	grams _	# of sheets	grams
	# of sheets	grams	# of she	ets grams	
Once you have a	ll the data, lab	el the axes, cho	ose the scale,	and graph them.	
<u>e</u> :					
Y Label:					
X Label: _					
Circle the graph wh	ich is most simil	ar to your data.			
≺ Axis			Y Axis		
	Linear Decre	ase	Expon	nential Decrease	

© 2020 Developed by the Parsons Conservation Laboratory of the Carlos Museum at Emory University in partnership with Briarlake Elementary School, Dekalb County School District, Georgia. Activity developed by B. Kasavan; resources by E. Bowen.